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 A lack of evidence of accuracy for various testing modalities for carbapenem-resistant Enterobacterales (CRE) 
reduces the efficiency of screening and delays the isolation of carriers. This study examined the performance of 

phenotypic detection of CRE in comparison to molecular testing. A cross-sectional study was conducted in an 

academic medical institution in Saudi Arabia on CRE-screened patients during a 36-month period (April 1, 2019, 

through March 31, 2022). Cases were followed up for their susceptibility status by the phenotypic gradient method 

and genotypes. Of 3,116 samples tested, 359 carbapenemase genes were detected in 297 strains (9.5%) belonging 
to 292 patients. Oxacilliniase-48 (OXA-48) was the most frequently detected genotype (n=190, 64%), followed by a 

combined New Delhi metallo-B-lactamase (NDM)/OXA-48 genotype (n=77, 25.9%). Variable missed isolation days 

were encountered for various genotypes (0-18.5 days), with an excellent clinical utility index obtained for 

screening the OXA-48 genotype phenotypically. The data provided some insights into the predictive role and 

shortcomings of the e-test alone in CRE screening. While it provided a reasonable approach in a CRE population 
dominated by OXA-48 genotypes, it was more likely to miss the NDM-incurred carbapenemase. Thus, local 

epidemiology in an institution must be considered when designing a local screening protocol in addition to 

consideration of cost and turnaround time. 
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INTRODUCTION 

The spread of infections caused by carbapenem-resistant 

Enterobacterales (CRE) is an urgent health issue, raising global 

concerns. CRE are now widely scattered across the continents 

and are increasingly implicated in causing hospital- and 

community-acquired infections, which are challenging to treat 

as they may exhibit resistance to old and new drugs [1-3]. 

Whilst CRE are defined by phenotypic testing, the 

carbapenemase-producing CRE (CP-CRE) is a genotypic finding 

that signifies the existence of a molecular basis for the 

carbapenem hydrolyzing enzyme. Carbapenemase genes are 

encoded on plasmids, which favors the possibility of horizontal 

spread and escalates the problem [4-7]. Hence, timely 

laboratory identification is needed to prevent their 

dissemination through implementing effective isolation 

measures [8-11].  

Although culture-based testing is recommended by the 

USA Centers for Disease Control and Prevention (CDC) for 

identifying CRE, this process is lengthy and may take ≥72 hours 

[12]. A recent meta-analysis focusing on evaluating the 

performance of molecular assays when applied in direct CRE 

testing from rectal swabs demonstrated good sensitivity (95%) 

and specificity (99%), which was associated with high 

heterogeneity among the studies [13]. The currently existing 

testing methods for carbapenemases produced by CRE include 

conventional culture-based approaches, which have high 

diagnostic yields but with long turnaround times (TATs), and 

rapid diagnostics that are sensitive and efficient but costly [14-

17]. Commercial rapid kits are being increasingly introduced to 

address this need, which are based on nucleic acid 

amplification technologies, immunochromatographic tests, or 

syndromic assays [4]. Culture-based phenotypic methods 

detect a broader spectrum of enzymes, while molecular testing 

offers the advantage of revealing silent mutations that are not 

expressed in vitro yet can be a potential cause of therapeutic 

failures [18, 19]. Hybrid testing of culture- and molecular-based 

methods to detect all resistance in CRE can be challenging for 

laboratories with a high prevalence and/or low resources.  

Hospitalized patients who are either infected or colonized 

with CP organisms should be admitted under contact 

precautions [20-22]. Contact precautions are recommended to 

be maintained for the entirety of their inpatient stay, and 

indefinitely during future hospital encounters, due to the 

extended colonization period and limited therapeutic options 

[22]. In addition, standard precautions that include hand 

hygiene and restriction of unnecessary usage of broad 

spectrum antimicrobial agents are crucial to preventing 

infection and limiting the spread of these difficult to treat 
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pathogens. Other effective preventive measures should focus 

on terminal cleaning and disinfection of patients’ facility and 

invasive devices. Rapid detection tools for CRE can have 

impacts on the prompt isolation of a colonized or infected case 

with subsequent prevention of horizontal transmission. 

Simulation is used in studying infectious diseases to provide 

screening options and other preventive tools, which can be 

done retrospectively or prospectively through mathematical 

modeling or [23, 24]. Most previous studies have assessed the 

performance of molecular CRE testing in direct patients’ swabs 

on admission versus culture-based testing [25-27]. In this 

study, culture-based minimal inhibitory concentrations (MIC) 

were determined and evaluated against genotypic testing for 

suspected CRE isolates using a commercial multiplex 

molecular platform. The aim is to address the potentially 

missed days of isolation in case of adopting a phenotypic 

modality for CRE screening in a low prevalence setting. 

MATERIALS AND METHODS 

Research Settings and Bacterial Identification 

This is a retrospective, cross-sectional study conducted at 

a 550-bed academic medical institution in Alkhobar, Eastern 

Region of Saudi Arabia. All screening samples received from 

adults and children admitted to the hospital during the period 

between April 1, 2019, through March 31, 2022, were included. 

Non-replicate strains of Escherichia coli and Klebsiella 

pneumoniae, isolated from various anatomical sites and 

representing a colonization status (respiratory, rectal, and 

chronic wounds) were identified by the VITEK® MS (bioMe ́rieux 

Inc., Durham, NC, USA), an automated mass spectrometry 

microbial identification system based on matrix-assisted laser 

desorption ionization time-of-flight (MALDI-TOF) technology. 

The colonies were tested for carbapenemase production 

phenotypically and genotypically as described. The electronic 

charts were reviewed to assess the isolation status of each case 

upon generating a laboratory report and to retrieve their 

clinical data. 

Detection of Carbapenemases  

As per the laboratory protocol, the strains were routinely 

tested for the production of carbapenemases using a 

molecular assay (Xpert® Carba-R, Cepheid Inc., Sunnyvale, CA, 

USA), which detects five major genes (IMP, KPC, NDM, VIM, and 

OXA-48). Additionally, e-test (AB-BIODISK, Sweden)-based 

MICs for both imipenem and meropenem were measured and 

interpreted following the manufacturer’s instructions and the 

Clinical and Laboratory Standards Institute guidance (CLSI 

2022) [28]. Muller Hinton agar plates (SPML, Riyadh, Saudi 

Arabia) were incubated overnight at ambient air (35°C) using a 

0.5 McFarland inoculum to determine the MIC. The point of 

intersection of the inhibition ellipse on e-test strip was 

recorded. Phenotypic susceptibility testing was also routinely 

performed for all the isolates using the VITEK 2 automated 

system (bioMe ŕieux Inc., Durham, NC, USA). Only strains with 

available MIC to both imipenem and meropenem were 

included in the cohort. Quality control strains (Pseudomonas 

aeruginosa ATCC® 27853 and Escherichia coli ATCC®a 25922) 

were run weekly as per the manufacturer’s recommendations. 

The consumables-based cost was calculated for each testing 

modality.  

Discrepant Analysis  

The discrepant cases were resolved, as follows: for Carba-R 

negative but culture-positive cases, the organism was sub-

cultured, and PCR was repeated from three-day incubated 

colonies. For culture-MIC negative but Carba-R positive cases, 

an additional assay was performed (mCIM test) as previously 

described [28]. Samples were divided into three groups based 

on the discrepant analysis results: the concordant group, 

which showed concordant Carba-R and culture-MIC results; the 

resolved group, which initially showed a discrepancy between 

the two assays that was resolved upon supplementary testing, 

and the discordant group, which remained as unresolved 

discrepancies.  

Statistical Analysis 

Statistical analyses were performed using GraphPad Prism 

version 9.3.1 for Mac. To compare the two assays, the 

sensitivity, specificity, positive predictive value (PPV), and 

negative predictive value (NPV) were calculated. Differences in 

TATs based on the electronic reports, and times to initiate 

isolation actions were analyzed by the one-way analysis of 

variance (ANOVA) test, which compares multiple means. The 

null hypothesis was all population means were equal, and the 

alternative hypothesis was that at least one mean was 

different. The Ct values of the concordant, resolved, and 

discordant groups were analyzed using the Kruskal-Wallis test. 

The number needed to diagnose (NND) was calculated as 

NND=1/[sensitivity-(1-specificity)], where the smaller the NND, 

the more useful the assay. The clinical utility index (CUI) was 

calculated as previously described [29]. The missed isolation 

days were estimated based on the historical data of isolation 

days per confirmed CRE case in the institution that considers 

any CRE screening culture result representative of a true carrier 

state in routine clinical practice. A p-value of less than 0.05 was 

considered significant.  

RESULTS  

Of 3,116 samples tested (2,037 E. coli and 1,079 Klebsiella 

pneumoniae), 359 carbapenemase genes were detected by 

Carba-R in 297 strains (9.5%) belonging to 292 patients (median 

age=63.5 years±18.4, Table 1), where the prevalence was 2.7% 

among E. coli and 22.5% in K. pneumoniae isolates. 80 strains, 

Table 1. Baseline characteristics of 292 patients who were 

colonized with CRE 

Baseline chrematistics Results 

Median age (years±SD) 63.5 years±18.4 

Gender (male) 151 (51.7%) 

ICU admission 202 (69.2%) 

Prior antimicrobial therapy (three months) 292 (100.0%) 

Indwelling device 228 (78.1%) 

Comorbidities 

Diabetes mellitus 203 (69.5%) 

Hypertension 209 (71.6%) 

End stage renal disease 96 (32.9%) 

Malignancy 17 (5.8%) 

Respiratory failure 134 (45.9%) 

Hepatic insufficiency 14 (4.8%) 

Cardiovascular disease 76 (26.0%) 

Neurological illness 55 (18.8%) 

Concurrent COVID-19 61 (20.9%) 
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which were identified as K. pneumoniae, possessed two 

carbapenemase genes representing 22.3% of all CRE.  

OXA-48 was the most frequently detected genotype (n=190, 

64%), followed by a combined OXA-48/NDM genotype (n=77, 

25.9%) and NDM in 27 cases (9.1%).  

Three KPC-harboring microorganisms (1%) were also 

carrying OXA-48, while no KPC, IMP, or VIM was detected as 

single genotypes in the cohort (Figure 1). 

Based on the phenotypic MIC, 280 strains (9.0%) fulfilled 

the CLSI definition for carbapenem resistance (MIC≥4 μg/ml to 

either carbapenem tested or not), including 12 isolates (4.3%) 

of K. pneumoniae with no resistance genes detected. The MIC90 

and MIC50 for both meropenem and imipenem were ≥32 μg/ml 

(Figure 2).  

The overall sensitivity and specificity of the e-test were 

90.6% (95% CI=86.8% to 93.6%) and 99.6% (95% CI=99.3% to 

99.8%). PPV and NPV for MIC testing to detect carbapenemases 

were 99.0% (95% CI=98.6% to 99.3%) and 98.7% (95% CI=98.3% 

to 99.1%), respectively with variable performance of e-test 

based on the underlying genotype (Table 2). 

In discrepant cases (n=41, 13.3%), Carba-R positive but 

MIC-susceptible strains were encountered in 29 cases (9.9%) 

with 100% concordance between imipenem and meropenem 

tests. These were mostly seen in case of a NDM genotype while 

they were less frequently encountered with OXA-48; n=15 

(55.6%) vs. 14 (7.4%) respectively (p=0.08). On the other hand, 

12 strains (3.9%) were resistant to both carbapenems 

phenotypically but no carbapenemase gene was detected. The 

samples were categorized into three groups: concordant, 

resolved, and discordant, with median Ct values of 18.5, 26.5, 

and 34.0 respectively (p=0.02). According to carbapenemase 

type, the difference in Ct value was statistically significant for 

NDM only (p≤0.01), but not in the case of OXA-48 or KPC (p=0.33 

and 0.67, respectively). The consumable-based cost per 

sample was 13.3 times more in the case of molecular 

genotyping ($120) in comparison with combined MIC-testing 

for both carbapenems, inclusive of susceptibility testing media 

($9). Conversely, median TAT for generating a report with 

 

Figure 1. Frequency of CRE genotypes amongst 297 isolates 

(Source: Author’s own elaboration) 

Table 2. Diagnostic performance of minimum inhibitory concentration-based testing for carbapenemases vs. genotyping in 297 

Enterobacterales strains 

Gene *No (%)  Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI) 

All genes  297 (100) 
Initial analysis 95.2% (92.1%-97.4%) 99.6% (99.3%-99.8%) 99.0% (98.6%-99.3%) 99.0% (98.6%-99.3%) 

Discrepancy resolved 90.6% (86.8%-93.6%) 99.7% (99.8%-99.8%) 99.6% (92.8%-99.9%) 98.7% (98.3%-99.1%) 

OXA-48 190 (64) 
Initial analysis 93.1% (88.8%-96.2%) 99.6% (99.3%-99.8%) 95.6% (92.5%-97.4%) 99.3% (98.8%-99.6%) 

Discrepancy resolved 87.2% (82.1%-91.2%) 99.9% (99.8%-100%) 99.7% (97.6%-99.9%) 98.7% (98.1%-99.1%) 

NDM 27 (9.1) 
Initial analysis 64.3% (48.0%-78.5%) 99.9% (99.9%-100%) 99.3% (95.2%-99.9%) 96.6% (94.9%-97.7%) 

Discrepancy resolved 48.2% (82.1%-91.2%) 99.9% (99.8%-100%) 100% (99.9%-100%) 94.5% (93.5%-96.0%) 

OXA-48/NDM 77 (25.9) 
Initial analysis 100% (95.3%-100%) 100% (99.9%-100%) 100% (99.9%-100%) 100% (99.9%-100%) 

Discrepancy resolved 100% (95.3%-100%) 100% (99.9%-100%) 100% (99.9%-100%) 100% (99.9%-100%) 

OXA-48/KPC 3 (1) 
Initial analysis 100% (29.2%-100%) 100% (99.9%-100%) 100% (99.9%-100%) 100% (99.9%-99.8%) 

Discrepancy resolved 100% (29.2%-100%) 100% (99.9%-100%) 100% (99.9%-100%) 100% (99.9%-99.8%) 

Non-OXA-48 27 (9.1) 
Initial analysis 64.3% (48.0%-78.5%) 99.9% (99.9%-100%) 99.3% (95.2%-99.9%) 96.6% (94.9%-97.7%) 

Discrepancy resolved 48.2% (82.1%-91.2%) 99.9% (99.8%-100%) 100% (99.9%-100%) 94.5% (93.5%-96.0%) 

Note. *The number of strains with CRE genes (samples harboring multiple genes were counted as one sample in this table); **Non-OXA-48 in this 

cohort was equivalent to NDM alone; CI: Confidence interval; PPV: Positive predictive value; NPV: Negative predictive value; KPC: Klebsiella 
pneumoniae carbapenemase; NDM: New Delhi metallo-β-lactamase; & OXA-48: Oxacillinase-48 

 

Figure 2. MIC distribution for genotypically confirmed CRE isolates (n=297) (Source: Author’s own elaboration) 
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notification to the infection control unit was 21.5 hours±10.7 

and 39.0 hours±14.1 for colony-based molecular detection and 

MIC testing respectively, resulting in missed isolation days 

ranging between 0-22.5 days, as shown in Table 3. 

The resistance rates for the CRE isolates to other 

antimicrobial agents are summarized in Table 4. In addition, 

MIC90 and MIC50 were also determined for two B-lactam-B-

lactamase inhibitor combinations. There were ceftazidime-

avibactam (MIC50=0.38 μg/ml, MIC90>256 μg/ml) and 

ceftolozane-tazobactam (MIC50=32 μg/ml, MIC90>256 μg/ml).  

DISCUSSION 

Acquired carbapenem resistance in Enterobacterales 

requires real-time interventions to prevent its dissemination. 

Therefore, institutions often seek cost-effective measures to 

aid in earlier detection at a reasonable cost. There is currently 

insufficient evidence to guide the use of various detection tools 

for CRE screening nor to determine the duration of isolation 

needed for colonized cases. In the present study, the rate of 

CRE (9.5%) among two commonly encountered species, E. coli 

and Klebsiella pneumoniae, was obtained using a combined 

culture-based approach of phenotypic and genotypic testing. 

This finding is comparable to the reported rates (7.8-12.2%) in 

studies conducted among similar patient populations in 

geographically related areas [1, 30]. However, our study 

assessed screening samples from cases throughout the 

hospital units rather than being an intensive-care-based 

screening. Furthermore, the study by Al Fadhil et al focused on 

multi-point serial testing in contrast to the single-point testing 

adopted in this study. It is known that the shedding of CRE 

among carriers is intermittent and thus a single-point test is 

likely to underestimate the prevalence [31, 32]. Of note, the 

currently found CRE rate among screening samples (9.5%) 

shows a significant increment from a baseline study (0.5%) 

conducted in the same institution seven years earlier [33]. 

Although this finding may suggest a rapidly increasing trend 

that necessitates close surveillance and prompt antimicrobial 

stewardship actions, variation in the testing strategy from 

direct rectal swab testing to culture-based screening can be an 

additional contributing factor. Because this study overlaps 

with the COVID-19 pandemic, 20.9% of CRE strains were 

detected in patients infected by SARS-CoV-2 (Table 1), leading 

to more challenges to the isolation facility and predisposing 

them to bacterial co-infection [34-38]. Bacterial coinfection 

and secondary infections were reported to be around 8% and 

20% respectively in a systematic review of 118 COVID-19 

studies [34]. Klebsiella pneumoniae was the most commonly 

isolated pathogen in coinfection in that meta-analysis, which 

makes CRE screening for such cases useful. 

Monitoring the genetic mechanism of carbapenem 

resistance not only helps in selecting optimal therapeutic 

regimens but also identifies emergent, newly circulating clones 

in a region [3, 39]. Whilst new β-lactam-β-lactamase inhibitor 

combinations such as ceftazidime-avibactam, and 

meropenem-vaborbactam can be potential therapeutic agents 

for infections caused by the serine carbapenemases, they do 

not offer coverage for metallo-carbapenemases such as NDM 

or IMP. Earlier studies in the Arabian Gulf Peninsula have 

consistently shown the predominance of the OXA-48 family 

among CRE, which support the current findings shown in 

Figure 1 [40-42]. This is in contrast to the USA, where another 

serine-carbapenemase “KPC” has been described as the most 

frequent genotype in K. pneumoniae [43-45].  

Most of the CRE isolates in this cohort possessed MIC>32 

μg/ml to both carbapenems, denoting high resistance patterns 

(Figure 2). In a retrospective Southeastern Asian report of 121 

CRE isolates [46], MICs<16 were described in the majority of the 

strains (65%). Conversely, we did not find the OXA-48 type in 

the present cohort reflecting lower MIC values. With limited 

therapeutic options, the treatment of CRE infections is 

uncertain and relies mainly on in vitro susceptibility testing. 

Knowing the local epidemiology can assist in outbreak 

settings, where empiric therapy should be considered for 

patients with serious infections until laboratory results 

become available (Table 4).  

A longer turn-around time of a screening assay results in 

additional medical expenses, overutilization of isolation 

facility, and on certain occasions may increase the risk of 

exposure to the tested pathogen by other patients if 

preemptive measures are not taken. By comparing the two 

modalities, molecular tests for CRE in suspected colonies 

enabled an accelerated action by the infection control team in 

our institution based on the shorter TAT. This has a clinical 

impact as it can support bed management in institutions, 

especially during critical periods such as an outbreak or a 

pandemic. Furthermore, molecular screening resulted in 

minimal missed isolation days in the institution because of its 

high sensitivity. The overall performance of Carba-R after 

resolving the discrepancy showed its higher concordance with 

the e-test MIC method for OXA-48, which is the dominating 

genotype (Table 2).  

Table 3. Prediction of minimum inhibitory concentration-based carbapenemase testing in various CRE genotypes 

Carbapenemase gene *No (%) NND* CUI** Missed isolation days (95% CI) 

All genes  297 (100.0) 1.11 0.90 22.5 (18.6-29.1) 

OXA-48 190 (64.0) 1.15 0.87 18.5 (12.8-23.6) 

NDM 27 (9.1) 2.08 0.48 10.5 (7.7-12.9) 

OXA-48/NDM  77 (25.9) 1.00 1.00 0.0 

OXA-48/KPC 3 (1.0) 1.00 1.00 0.0 

Non-OXA-48 27 (9.1) 2.08 0.48 10.5 (7.7-12.9) 

Note. *NND: Number needed to diagnose & **CUI: Clinical utility index 

Table 4. Antimicrobial susceptibility profiles of 297 

genotypically confirmed CRE isolates 

Drug (no tested) Susceptible no (%) 

Doxycycline (297) 212 (71.4) 

Gentamicin (297) 211 (71.0) 

Amikacin (297) 229 (77.1) 

Ciprofloxacin (297) 127 (42.8) 

Levofloxacin (297) 82 (27.6) 

Nitrofurantoin (297) 71 (23.9) 

Trimethoprim-sulfamethoxazole (297) 53 (17.8) 

Ceftazidime-avibactam (68) 39 (56.5) 

Ceftolozane-tazobactam (68) 0 (0.0) 
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Although we conservatively considered the 17 cases out of 

3,114 (0.5%) that harbored a carbapenemase gene as a 

colonized patient, caution needs to be exercised as false 

positivity has been reported for Carba-R assay, which can result 

in unnecessary isolation of the patients [47]. Further studies 

are required to clarify the clinical impact of Carba-R-positive 

and MIC-negative samples. On the other hand, sensitivity is an 

important advantage of a molecular screening method for CRE, 

which can be impacted by the genotype under testing. After 

resolving the discrepancy by the mCIM test, 12 isolates (4.0%) 

remained Carba-R negative but with elevated MIC to both 

carbapenems. This can be explained by having another rare 

gene not included in the multiplex cartridge or a low load of 

certain metallo-lactamase genes. The study [48] demonstrated 

up to a 100-fold higher limit of detection in cases of NDM- and 

VIM-harboring strains in comparison to the serine-based 

enzymes, which is also demonstrated in the Ct values in our 

study. The comparative cost of the different molecular- and 

culture-based screening tools should be analyzed considering 

other factors in each institution. 

Active surveillance for patients with a high risk for CRE 

colonization can be an informative infection control tool [49, 

50]. Reduced transmission of KPC-producing K. pneumoniae 

was evident in multiple studies that adopted comprehensive 

infection control measures inclusive of active screening [51-

53]. In particular, screening is useful in outbreak settings, 

where rapid molecular testing can enable the detection of 

colonized cases and there has been emerging data suggesting 

that colonization with certain CRE clones harboring NDM can 

be linked to bloodstream infections although further 

assessment of this finding is necessary [54]. Yet, the data on 

optimal and cost-effective testing for CRE screening in routine 

infection control practice is limited. The missed isolation days 

for phenotypic CRE screening in this study were 22.5 days (18.6-

29.1). It is important to note that the extent of missed isolation 

days can be influenced by the background rate of CRE carriage 

among the tested population, and also the predominant 

genotype within an institution. In addition, the patients’ risk 

factors, and local infection control policies for suspected or 

confirmed CRE carriers are among other contributing factors 

that can justify the need to shift to rapid diagnostics. CUI and 

NND results suggest that phenotypic testing is accurate in 

detecting most genotypes, particularly the strains with mixed 

genes (Table 3).  

Nevertheless, it is important to consider the difference in 

TAT of both testing modalities when assessing the preventive 

potential of a laboratory assay. Because multifaceted 

approaches are often followed to reduce the occurrence of 

outbreaks caused by multidrug-resistant organisms including 

CRE, the individualized role of a screening tool remains 

uncertain. Further studies are required in areas with variable 

CRE genotypes to investigate the cost-efficacy of screening 

yields in high and low prevalence settings. The duration of CRE 

asymptomatic colonization is also uncertain and can be 

persistent for long periods due to a lack of effective 

decolonization protocol [22, 55]. Thus, active surveillance is 

needed to continue as an important measure in order to 

contain the spread of these organisms in health care settings, 

while some institutions opt to indefinitely apply contact 

precautions for a patient after being identified as a CRE 

colonizer. 

Our study simulates clinical practice in low CRE prevalence 

settings, where a large number of patients’ samples are 

screened with a less than 10% positivity rate. Its main 

limitation is the underrepresentation of certain 

carbapenemase genes that are not endemic in the region. 

Additionally, only E. coli and Klebsiella pneumoniae were 

included in the study, which are together responsible for > 99% 

of CRE cases, since the routine local laboratory algorithm does 

not offer reflux testing for CRE on other genera such as Serratia, 

Enterobacter, and others [56, 57]. Furthermore, we excluded 

strains, where only one carbapenem MIC was performed (n=33) 

due to logistic issues. Other resistance genes and efflux 

mechanisms were not tested in the described strain panel, and 

although the data represent a specific institutional experience 

rather than being a population-based study, it contributes to 

the growing evidence of optimizing CRE screening considering 

various prevalence and resources.  

CONCLUSIONS 

In conclusion, the study has shed light on two culture-

based testing tools for CRE, the determination of MIC and 

genotyping. It illustrated that either method can be used to 

detect CRE in a low prevalence setting that is dominated by the 

OXA-48 genotype with high accuracy. The superior sensitivity 

and shorter time to action displayed by molecular testing can 

be outweighed by its higher costs in less-resourced 

laboratories. A combined approach of CRE genotyping and MIC 

determination remains the most optimal in guiding clinical 

management as well as in detecting all CRE isolates. 
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